If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+9=90
We move all terms to the left:
2y^2+9-(90)=0
We add all the numbers together, and all the variables
2y^2-81=0
a = 2; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·2·(-81)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*2}=\frac{0-18\sqrt{2}}{4} =-\frac{18\sqrt{2}}{4} =-\frac{9\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*2}=\frac{0+18\sqrt{2}}{4} =\frac{18\sqrt{2}}{4} =\frac{9\sqrt{2}}{2} $
| -9n-3=-12 | | -2.3-3x=7.3 | | 72=12+15x | | v+2v-2v=8 | | (4x+23)=(10x-1) | | 3(x+20)=2x+30 | | 2(x+10)=x+15 | | 4x^{3}-52x^{2}+124x+360=0 | | 4(2x-1)-2=6+4(x-7) | | 20=-3/2(x-2) | | 19k+3k-6k-15k=19 | | 72,112-64,309=x | | 98=-7n-7 | | 5t+t+3t=18 | | x√2+12x+120=0 | | 2(2x+19)=X+11 | | -20=-2a+6 | | -11x/18=7 | | 5(x-3)-7=-2(x+4)+ | | 17u+2u+2u-u=20 | | 10x-11+8x-20=43 | | k+22=26 | | 1/2(10y-2)+4y=-25 | | 2c-5(c-1)=-50(-5X) | | .8+7y=495 | | 10x+1.2=6.2 | | -8s+9(s+8)^2=65 | | 10x+-11+8x-20=43 | | -20x-2(4x+11)+6= | | -g-14g+-2g=17 | | y/3+4=14+y/2 | | 9(s+8)^2-8(s+8)=1 |